Zinc attenuates malathion-induced depressant-like behavior and confers neuroprotection in the rat brain.
نویسندگان
چکیده
Malathion is an organophosphate widely used as an insecticide in agriculture and in public health programs, causing risk to human health. As was recently reported, malathion induces depressant-like behavior and oxidative damage to the brain of rodents. Given the relevance of searching for neuroprotective agents against such damage, this study was therefore undertaken to investigate the neuroprotective potential of zinc in dealing with malathion-related toxicity. Female Wistar rats were exposed to malathion (50 and 100 mg/kg, ip) and/or zinc chloride (ZnCl2; 5 mg/kg, ip) for 3 days. Malathion produced a depressant-like effect, observed by the increased immobility time in the forced swimming test (FST), without affecting total locomotor activity and rearing in the open-field. However, malathion administered at 50 mg/kg reduced the central time in the arena and at the dose of 100 mg/kg reduced the central locomotion. These effects were completely reversed by ZnCl2. Exposure to malathion (50 mg/kg, ip) and/or ZnCl2 did not affect AChE activity in the hippocampus, cerebral cortex, and blood. Malathion (50 mg/kg, ip) alone caused some harmful effects, such as (1) an increase in lipid peroxidation and a reduction of glutathione peroxidase activity in the cerebral cortex, (2) reduction of glutathione reductase activity in the hippocampus, and (3) changes in the structure of chromatin in the dentate gyrus, all effects attenuated by ZnCl2. In conclusion, these results clearly show that zinc administration is able to attenuate some neurochemical, morphological, and behavioral effects induced by malathion, notably the malathion-induced depressant-like effect in the FST.
منابع مشابه
Involvement of brain-derived neurotrophic factor (BDNF) on malathion induced depressive-like behavior in subacute exposure and protective effects of crocin
Objective(s): In this study the effect of crocin, a carotenoid isolated from saffron, on malathion (an organophosphate insecticide) induced depressive- like behavior in subacute exposure was investigated. Moreover the molecular mechanism of malathion induced depressive- like behavior and its decreasing effect on the level of brain derived neurotrophic factor (BDNF) in rat hippocampus and cerebr...
متن کاملPentoxifylline Attenuates Malathion-Induced Oxidative Damage in Rat
Introduction: Toxic effects of pesticides are commonly associated with reactive oxygen species damage and pentoxifylline a phosphodiesterase inhibitor is a drug well known for antioxidant properties. The purpose of this study was to evaluate the oxidative damages following a subacute exposure to malathion, an organophosphorus insecticide and pentoxifylline's ability to counteract these effect...
متن کاملMethanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms
Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar...
متن کاملInvolvement of brain-derived neurotrophic factor (BDNF) on malathion induced depressive-like behavior in subacute exposure and protective effects of crocin
OBJECTIVES In this study the effect of crocin, a carotenoid isolated from saffron, on malathion (an organophosphate insecticide) induced depressive- like behavior in subacute exposure was investigated. Moreover the molecular mechanism of malathion induced depressive- like behavior and its decreasing effect on the level of brain derived neurotrophic factor (BDNF) in rat hippocampus and cerebral ...
متن کاملHuman chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density
Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 97 1 شماره
صفحات -
تاریخ انتشار 2007